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Abstract

In this paper, a second-order Total Variation Diminishing (TVD) finite difference scheme of upwind type is employed

for the numerical approximation of the classical hydrodynamic model for semiconductors proposed by Bløtekjær and

Baccarani–Wordeman. In particular, the high-order hyperbolic fluxes are evaluated by a suitable extrapolation on ad-

jacent cells of the first-order fluxes ofRoe,while total variation diminishing is achieved by limiting the slopes of the discrete

Riemann invariants using the so-called Flux Corrected Transport approach. Extensive numerical simulations are per-

formed on a submicron nþ � n� nþ ballistic diode. The numerical experiments show that the spurious oscillations arising

in the electron current are not completely suppressed by the TVD scheme, and can lead to serious numerical instabilities

when the solution of the hydrodynamic model is non-smooth and the computational mesh is coarse. The accuracy of the

numerical method is investigated in terms of conservation of the steady electron current. The obtained results show that

the second-order scheme does not behave much better than a corresponding first-order one due to a poor performance of

the slope limiters caused by the presence of local extrema of theRiemann invariant associatedwith the hyperbolic system.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

In this work, the classical hydrodynamic model (HD) for semiconductors developed by Bløtekjær (see

[10]) and Baccarani and Wordeman (see [6]), is numerically approximated by a second-order TVD finite

difference scheme.
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High resolution schemes have been largely applied, in the last 30 years, in compressible aerodynamics for

the numerical computation of shocks, since they may resolve strong discontinuities without smearing effects

or generating spurious oscillations.
In semiconductor device simulation, high-order shock capturing algorithms have been applied in [17,19],

where the HD model is solved by a third-order ENO finite difference approximation, and in [3–5], where the

second-order Nessyahu–Tadmor finite difference scheme is used for the solution of an improved hydro-

dynamic model including viscous terms in the momentum-energy equations. In the aforementioned papers,

numerical simulations of the one-dimensional nþ � n � nþ diode are presented to illustrate the perfor-

mance of the discretization method. The computed solutions show the non-monotonicity of the steady

electron current profile, that is affected by spurious oscillations which become very large near the drain

junction of the device. This can be a serious problem in real-life applications, since the current is usually the
most relevant outcome of numerical simulation. Current flux conservation is thus a property of main

concern in semiconductor device modeling, and to the authors� knowledge it appears that a thorough in-

vestigation of the influence of the oscillations in the current profile on the numerical convergence of nu-

merical schemes for hydrodynamic models is still lacking.

In the present work, dealing with the same benchmark device as in the references above, we want to

investigate whether and how much the convergence of the TVD high-order finite difference scheme used in

the HD simulation is affected by the (possible) non-monotonicity of the computed solution.

The numerical method adopted in this paper is a suitable extension to the vector case of the well-known
second-order fully upwinded scalar discretization developed by Osher and Chakravarthy in [13]. The high-

order fluxes are discretized by a suitable extrapolation on adjacent cells of the first-order fluxes of Roe, and

total variation diminishing is achieved by limiting the slopes of the discrete Riemann invariants, according to

the so-called Flux Corrected Transport approach (FCT), originally developed by Boris and Book (see [11,12])

and applied to the discretization of the HD model for semiconductors in [1,2]. With this aim, several slope

limiters are employed in numerical computations, as extensively discussed in Section 4 of the paper.

The evaluation of the high-order fluxes by extrapolation of the first-order fluxes does not require the use

of an approximate Riemann solver, so that the numerical stability of the method can be furtherly enhanced
by performing a semi-implicit time discretization of the relaxation terms in the hydrodynamic model.

Moreover, the choice of a fully upwinded method attempts to minimize the loss of accuracy due to artificial

diffusion, since, if compared to a central scheme, an upwinded discretization uses the information of the

characteristic directions to introduce a smaller amount of numerical viscosity in the discrete counterpart of

the hyperbolic system.

Extensive numerical experiments are performed in the simulation of a semiconductor model device,

namely, a nþ � n � nþ one-dimensional diode, which is a prototype of the channel region of a submicron

MOS transistor widely employed in contemporary microelectronics technology.
Computations are carried out at an external temperature of 77 K to investigate the convergence of the

discretization method proposed in this paper in the numerical solution of the HD system at supersonic

regime conditions. In particular, it is shown that the scheme, despite being TVD, does not entirely remove

the spurious oscillations in the computed solution. These oscillations are the main responsible of conver-

gence breakdown when the solution of the hydrodynamic model is non-smooth and the computational

mesh is coarse. The simulations show also that the high resolution scheme does not achieve much better

accuracy than the low-order one, as far as the evaluation of the electron current at steady state is concerned,

due to a poor performance of the slope limiters caused by the presence of local extrema of the Riemann
invariant associated with the hyperbolic system.

The work is organized as follows: in Section 2 the hydrodynamic model is briefly described. Then, the

numerical method is presented in Section 3, where the FCT technique is applied to systems of conservation

laws via Roe linearization. The numerical experiments are discussed in Section 4, while some conclusions

are drawn in Section 5.
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2. The hydrodynamic model

The hydrodynamic model for electron charge transport in semiconductor comprises the following
conservation laws for electron mass, momentum and energy

on
ot

þ divðnvÞ ¼ 0;

oðnvÞ
ot

þ div nv� vþ nRT Ið Þ þ nv
sp

¼ � qn
m
nE;

oðneÞ
ot

þ div nevþ nRT vþ qð Þ þ ne� ne0
sw

¼ � qn
m
nE � v:

8>>>>>><
>>>>>>:

ð1Þ

In (1), n is the electron density, v ¼ ðu1; u2; u3ÞT is the electron velocity and e the total energy per unit mass,

defined as e ¼ 3=2RT þ 1=2jvj2, where T is the absolute electron temperature, R ¼ KB=m, m is the electron

effective mass, KB is the Boltzmann constant, jvj is the magnitude of the velocity vector, ðv� vÞij ¼ uiuj, and
I is the identity matrix. Moreover, q is the heat flux, sp and sw are the characteristic times for the relaxation
of momentum and energy, respectively, and e0 ¼ 3=2RT0 is the internal energy of the lattice, T0 being the

temperature corresponding to thermodynamic equilibrium. Finally, qn is the electron charge ð> 0Þ and E is

the electric field.

The hydrodynamic system (1) must be coupled with the Poisson equation for the electric field

divð�EÞ ¼ qnðN � nÞ ð2Þ

supported by the constitutive relation

E ¼ �r/ ð3Þ

between the electric field and the electrostatic potential /. In (2), � is the dielectric permittivity of the

semiconductor medium and N is a given function that models the doping profile in the semiconductor
device.

Notice that the hyperbolic part of the hydrodynamic system (1) corresponds exactly to the Euler

equations for compressible fluids. Nevertheless, if compared to a gas dynamics problem, the hydrodynamic

model for semiconductors is more challenging to deal with, due to the high electric fields that are experi-

enced in submicron devices where strong variations of the doping profile occur (see Section 3). As for the

constitutive relations in (1), the heat flux is described by the Fourier-type relation

q ¼ �krT ; ð4Þ

where the heat conductivity k is given by the Wiedemann–Franz law

k ¼ kW�F

l0

mqn
K2

BnT0 ð5Þ

and the relaxation times are given by the Baccarani–Wordeman relations

sp ¼ m
l0

qn

T0
T
; sw ¼ m

l0

2qn

T0
T
þ 3

2

l0

qnv2s
KBT0;

where the low-field mobility l0 obeys the following law:

l0 ¼
Dl

1þ N=Nrefð Þa

Dl, Nref and a being suitable parameters depending on T0.
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The parameter kW�F appearing in (5), which measures the amount of heat dissipation, is left unspecified

in order to perform a parametric study about its influence on the numerical solution (see Section 4).
3. The numerical method

The numerical method used to approximate the hydrodynamic system of conservation laws (1) is a Total

Variation Diminishing (TVD) second-order fully one-side upwinded finite difference scheme.

Rigorously speaking, TVD is a purely scalar property, which ensures that spurious oscillations are

completely removed from the numerical solution of a nonlinear conservation law, as shown by Harten in

[18]. A rigorous extension of this concept to the vector case can only be done for linear hyperbolic systems
with constant coefficients, that, passing to the characteristic variables, are equivalent to a diagonal system

of scalar hyperbolic equations. Hence, we have decided to use for the numerical approximation of the

hydrodynamic problem, a finite difference scheme that is TVD when applied to nonlinear scalar conser-

vation laws and to linear hyperbolic systems with constant coefficients.
3.1. TVD fully upwinded semi-discretization of a linear hyperbolic equation

For ease of presentation, we describe the numerical method and its properties starting from the dis-
cretization of the model linear hyperbolic equation

ou
ot

þ of ðuÞ
ox

¼ 0 ð6Þ

on the space–time domain x 2 R, t > 0, where f ðuÞ ¼ au, a being a real constant.

With this aim, let us introduce a uniform time–space grid of collocation nodes tk and xi, and define time

and space intervals Dt ¼ tkþ1 � tk and DX ¼ xiþ1 � xi. Then, let us consider the spatial discretization of the

flux derivative

of
ox

����
xi

¼: 1

DX
f high

iþ1=2

�
� f high

i�1=2

�
; ð7Þ

where

f high

iþ1=2 ¼ aþui þ a�uiþ1 þ
1

2
aþ uið � ui�1Þ �

1

2
a� uiþ2ð � uiþ1Þ ð8Þ

and

a� ¼ 1

2
ða� jajÞ: ð9Þ

The discretization (7)–(9) is a second-order fully upwinded 5-point scheme, where the high-order flux (8) is

evaluated starting from the low-order flux

f low
iþ1=2 ¼

1

2
fiþ1ð þ fiÞ �

1

2
aj jðuiþ1 � uiÞ ð10Þ

and performing the following fully one-side upwinded extrapolation on adjacent cells (see [14,20])

f high

iþ1=2 ¼ f low
iþ1=2 þ

1
fi

�
� f low

i�1=2

�
þ 1

fiþ1

�
� f low

iþ3=2

�
; ð11Þ
2 2
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where fk ¼ auk at each space grid point xk. Substituting (8) in (7) one gets

of
ox

����
xi

� df
dx

����
xi

¼: aþ

DX
uið � ui�1Þ þ

a�

DX
uiþ1ð � uiÞ þ

aþ

DX
ui � ui�1ð Þ

2
� aþ

DX
ui�1 � ui�2ð Þ

2

þ a�

DX
uiþ1 � uið Þ

2
� a�

DX
uiþ2 � uiþ1ð Þ

2
: ð12Þ

Let us now discretize the time derivative in (6) by the forward Euler scheme, so that the numerical ap-
proximation of (6) becomes

ukþ1
i � uki
Dt

þ df
dx

����
k

xi

¼ 0 ð13Þ

df
dx j

k
xi
being given by (12) where each quantity uj is evaluated at the time level tk.

The approximation (12) and (13) is not TVD, and, in order to achieve total variation diminishing, we

apply the so-called Flux Corrected Transport technique (FCT). Following this approach, relation (12) is

replaced with

df
dx

����
xi

¼ aþ

DX
uið � ui�1Þ þ

a�

DX
uiþ1ð � uiÞ þ

aþ

DX
Wþ

i�1=2

ui � ui�1ð Þ
2

� aþ

DX
Wþ

i�3=2

ui�1 � ui�2ð Þ
2

þ a�

DX
W�

iþ1=2

uiþ1 � uið Þ
2

� a�

DX
W�

iþ3=2

uiþ2 � uiþ1ð Þ
2

; ð14Þ

where Wþ
iþ1=2, W

�
iþ1=2 are the so-called flux limiters. Setting W�

j ¼ 1 for all j in (14) clearly recovers (12).
Notice that, if

W�
iþ1=2 ¼ 1þ O DXð Þ ð15Þ

the numerical approximation (14) is still second-order accurate. Indeed, define the so-called antidiffusive

flux

f high

iþ1=2 � f high

i�1=2

DX
�
f low
iþ1=2 � f low

i�1=2

DX
¼ aþ

DX
ui � ui�1ð Þ

2
� aþ

DX
ui�1 � ui�2ð Þ

2
þ a�

DX
uiþ1 � uið Þ

2
� a�

DX
uiþ2 � uiþ1ð Þ

2
:

Then, it can be checked that the anti-diffusive flux is OðDX Þ accurate, so that a second-order correction is
introduced if (15) holds. Notice also that the first-order Roe scheme is recovered if W�

iþ1=2 ¼ 0.

Away from local extrema of the computed solution, we can compute the ratios

hþiþ1=2 ¼
uiþ2 � uiþ1

uiþ1 � ui
; h�iþ1=2 ¼

ui � ui�1

uiþ1 � ui
ð16Þ

and rewrite (14) as

df
dx

����
xi

¼ aþ

Dx
1

"
þ 1

2
Wþ

i�1=2 �
1

2

Wþ
i�3=2

hþi�3=2

#
uið � ui�1Þ þ

a�

Dx
1

"
þ 1

2
W�

iþ1=2 �
1

2

W�
iþ3=2

h�iþ3=2

#
uiþ1ð � uiÞ: ð17Þ

Setting

Wþ
iþ1=2 ¼ W hþiþ1=2

� �
; W�

iþ1=2 ¼ W h�iþ1=2

� �
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it can be shown (see [20]) that the scheme (13)–(17) is second-order accurate (away from local extrema) and

TVD if the function W satisfies

Wð1Þ ¼ 1 ð18Þ

and

WðhÞ
h

�WðrÞ6 2 ð19Þ

for all values of h and r. Notice that the function W works directly on the slopes of the unknown variables,

and, actually, behaves as a slope limiter.

The discretization above is not well defined at the local extrema of the computed solution, where the

ratios (16) are null or cannot be defined. To overcome this limitation, we shall set

W�
iþ1=2 ¼ Wþ

iþ1=2 ¼ W�
iþ3=2 ¼ Wþ

i�1=2 ¼ 0

for those i such that

uiþ1 � ui ¼ 0:

By doing so, the accuracy of the method reduces to first-order near local extrema.

Let us now define the still unspecified flux limiting function W. Among the several examples present in

the literature, we consider the following functions, that will be denoted, for the sake of brevity, by SL1(h),
SL2(h) and SL3(h), respectively:
• the minmod limiter

WðhÞ ¼ SL1ðhÞ ¼ minðh; 1Þ if h > 0;
0 if h6 0

�

• the limiter proposed by Van Albada et al. (see [22])

WðhÞ ¼ SL2ðhÞ ¼ h2 þ h

1þ h2

• the Superbee limiter

WðhÞ ¼ SL3ðhÞ ¼ max½0;minð2h; 1Þ;minðh; 2Þ�:

Finally, notice that by simply setting

WðhÞ ¼ 0

the scheme (13)–(17) reduces to the first-order Roe semidiscretization (see [21]).

3.2. The second-order scheme for the discretization of a hyperbolic system of conservation laws

In this section, we extend the second-order difference scheme illustrated in Section 3.1 to the discreti-

zation of the following nonlinear system of conservation laws

oU

ot
þ oF

ox
¼ 0: ð20Þ

System (20) corresponds to the hyperbolic part of the hydrodynamic model (1) in one spatial dimension,

provided that we set
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U ¼
n
nu
ne

0
@

1
A; F ¼ FðUÞ ¼

nu
nu2 þ nRT
nueþ nuRT

0
@

1
A:

Let AðUÞ ¼ d
dU

FðUÞ be the Jacobian matrix of the vector of convective fluxes, and let R and

diagðk1; . . . ; kpÞ be the eigenvector and eigenvalue matrices of A, respectively, p being the dimension of the

vector of the unknowns. Moreover, we define

k�h ¼ 1

2
khð � khj jÞ; h ¼ 1; . . . ; p; ð21Þ
K� ¼ diagðk�1 ; . . . ; k
�
p Þ;
A� ¼ RK�R�1; jAj ¼ Aþ � A�:

Let us consider the Roe Jacobian matrix Aiþ1=2 ¼ AðUiþ1=2Þ such that (see [21])

Aiþ1=2 Uiþ1ð �UiÞ ¼ Fiþ1 � Fi

and let us define the characteristic increments

DViþ1=2 ¼ Dv1iþ1=2
; . . . ;Dvpiþ1=2

h i
¼ R�1

iþ1=2DUiþ1=2;

where, for any vector S, we denote by D the difference operator

DSiþ1=2 ¼ Siþ1 � Si:

We consider the second-order spatial discretization

oF

ox

����
xi

¼: 1

DX
Fhigh

iþ1=2

�
� Fhigh

i�1=2

�
; ð22Þ

where the high-order fluxes

F
high

iþ1=2 ¼
1

2
Fið þ Fiþ1Þ �

1

2
jAjiþ1=2 Uiþ1ð �UiÞ þ

1

2
Aþ

i�1=2 Uið �Ui�1Þ �
1

2
A�

iþ3=2 Uiþ2ð �Uiþ1Þ ð23Þ

are evaluated starting from the low-order fluxes

Flow
iþ1=2 ¼

1

2
Fiþ1ð þ FiÞ �

1

2
Aj jiþ1=2 Uiþ1ð �UiÞ ð24Þ

and performing the fully one-side upwinded extrapolation

Fhigh

iþ1=2 ¼ Flow
iþ1=2 þ

1

2
Fi

�
� Flow

i�1=2

�
þ 1

2
Fiþ1

�
� Flow

iþ3=2

�
: ð25Þ

Clearly, (22)–(24) and (25) are the extension of (7), (8), (10) and (11) to the case of hyperbolic systems.

The scheme (22) and (23) can be rewritten as

oF

ox

����
xi

¼: 1

DX
A�

iþ1=2 Uiþ1ð
�

�UiÞ þ Aþ
i�1=2 Uið �Ui�1Þ þ

1

2
Aþ

i�1=2 Uið �Ui�1Þ �
1

2
Aþ

i�3=2 Ui�1ð �Ui�2Þ

þ 1

2
A�

iþ1=2 Uiþ1ð �UiÞ �
1

2
A�

iþ3=2 Uiþ2ð �Uiþ1Þ
�
;

which is the counterpart of (12) in the case of hyperbolic systems.
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As in the scalar case, in order to make the scheme TVD, we replace the expression above with

oF

ox

����
xi

¼: 1

DX
A�

iþ1=2 Uiþ1ð
�

�UiÞ þ Aþ
i�1=2 Uið �Ui�1Þ þ

1

2
Uþ

i�1=2A
þ
i�1=2 Uið �Ui�1Þ

� 1

2
Pþ

i�3=2A
þ
i�3=2 Ui�1ð �Ui�2Þ þ

1

2
U�

iþ1=2A
�
iþ1=2 Uiþ1ð �UiÞ �

1

2
P�

iþ3=2A
�
iþ3=2 Uiþ2ð �Uiþ1Þ

�
;

ð26Þ

where U�
iþ1=2, P

�
iþ3=2 are suitable matrices of flux limiters, that must be equal, up to OðDX Þ terms, to the

identity matrix, in presence of regular solutions and for almost all the nodes of the mesh. Clearly, (26) is the

extension of (14) to the case of hyperbolic systems.

Now, by directly limiting the slopes of the characteristic variables, we want to get a TVD scheme when
applied to nonlinear hyperbolic equations and to linear hyperbolic systems with constant coefficients. With

this aim, for h ¼ 1; . . . ; p, let us define the quantities

x�
hiþ1=2

¼
Dvhiþ1=2

Dvhi�1=2

; xþ
hiþ1=2

¼
Dvhiþ1=2

Dvhiþ3=2

;

h�hiþ1=2
¼

Dvhi�1=2

Dvhiþ1=2

; hþhiþ1=2
¼

Dvhiþ3=2

Dvhiþ1=2

;

w�
hiþ1=2

¼ W h�hiþ1=2

� �
; wþ

hiþ1=2
¼ W hþhiþ1=2

� �
;

n�hiþ1=2
¼

k�hi�1=2

k�hiþ1=2

if k�hiþ1=2
6¼ 0;

1 if k�hiþ1=2
¼ 0;

8><
>:
nþhiþ1=2
¼

kþhiþ3=2

kþhiþ1=2

if kþhiþ1=2
6¼ 0;

1 if kþhiþ1=2
¼ 0;

8><
>:

whereW is the flux limiting function defined in Section 3.1. Moreover, let us introduce the diagonal matrices

X�
iþ1=2 ¼ diag x�

1iþ1=2
; . . . ;x�

piþ1=2

� �
; H�

iþ1=2 ¼ diag h�1iþ1=2
; . . . ; h�piþ1=2

� �
;

W�
iþ1=2 ¼ diag w�

1iþ1=2
; . . . ;w�

piþ1=2

� �
; N�

iþ1=2 ¼ diag n�1iþ1=2
; . . . ; n�piþ1=2

� �
:

Now, in order to obtain a scheme that is second-order accurate and TVD along the characteristic direc-

tions, we set

U�
iþ1=2 ¼ Riþ1=2W

�
iþ1=2R

�1
iþ1=2; ð27Þ
� � � �1 � � �1
Piþ3=2 ¼ Riþ3=2Wiþ3=2Xiþ3=2Riþ3=2Riþ1=2Niþ3=2Hiþ3=2Riþ3=2; ð28Þ
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Uþ
i�1=2 ¼ Ri�1=2W

þ
i�1=2R

�1
i�1=2; ð29Þ
Pþ
i�3=2 ¼ Ri�3=2W

þ
i�3=2X

þ
i�3=2R

�1
i�3=2Ri�1=2N

þ
i�3=2H

þ
i�3=2R

�1
i�3=2: ð30Þ

Substituting (27)–(30) into (26), we get after some elementary matrix calculations the desired second-order

TVD spatial discretization of the flux derivative

oF

ox

����
xi

¼: 1

DX
A�

iþ1=2 Uiþ1ð
�

�UiÞ þ Aþ
i�1=2 Uið �Ui�1Þ

1

2
Ri�1=2W

þ
i�1=2R

�1
i�1=2A

þ
i�1=2 Uið �Ui�1Þ

� 1

2
Ri�3=2W

þ
i�3=2X

þ
i�3=2R

�1
i�3=2A

þ
i�1=2 Uið �Ui�1Þ þ

1

2
Riþ1=2W

�
iþ1=2R

�1
iþ1=2A

�
iþ1=2 Uiþ1ð �UiÞ

� 1

2
Riþ3=2W

�
iþ3=2X

�
iþ3=2R

�1
iþ3=2A

�
iþ1=2 Uiþ1ð �UiÞ

�
ð31Þ

that can be written in the following compact form

oF

ox

����
xi

� dF
dx

����
xi

¼: 1

DX
I

�
þ 1

2
Ri�1=2W

þ
i�1=2R

�1
i�1=2 �

1

2
Ri�3=2W

þ
i�3=2X

þ
i�3=2R

�1
i�3=2

�
Fi

�
� Flow

i�1=2

�

þ 1

DX
I

�
þ 1

2
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�
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�
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�
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�
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�
: ð32Þ

For those i where some of the entries in the vector DViþ1=2 vanish, the matrices W�
iþ1=2, W

þ
i�3=2, W

�
iþ3=2, X

�
iþ1=2,

Xþ
i�3=2, X

�
iþ3=2 cannot be constructed by the procedure above. As in the scalar case, the procedure to

overcome this problem consists of setting to zero the entries of such matrices that cannot be computed due
to division by zero.

Let us now discretize the time derivatives in (20) using the forward Euler scheme, and consider the fully

discrete approximation

Ukþ1
i �Uk

i

Dt
þ dF

dx

����
k

xi

¼ 0; ð33Þ

where dF
dx j

k
xi
is computed at each time level tk according to relation (32).

Proposition 1. When applied to linear hyperbolic systems with constant matrix A the numerical scheme (32),

(33) is TVD along the characteristic directions.

Proof. It is enough to notice that taking the product to the left of Eqs. (32), (33) with the constant ei-
genvector matrix R leads to the TVD formulation (13)–(17) in each characteristic variable. Notice also that

Proposition 1 holds true also for nonlinear hyperbolic systems with constant characteristic directions. �

Proposition 2. The numerical scheme (32), (33) applied to nonlinear scalar conservation laws is TVD.

Proof. The result immediately follows by noticing that relation (32) degenerates, in the scalar case, into the
form (17) that can be proved to be TVD (see [20]). �

Proposition 3. Away from local extrema, in presence of a regular solution and choosing a sufficiently smooth

function W, the spatial semi-discretization (31) is second-order accurate.



L.V. Ballestra, R. Sacco / Journal of Computational Physics 195 (2004) 320–340 329
Proof. The proof immediately follows from the fact that the quantities U�
iþ1=2, P

�
iþ3=2, U

þ
i�1=2 and Pþ

i�3=2, due

to the consistency requirement (18), are first-order approximations of the identity matrix, away from local

extrema of the characteristic variables. On the other hand, at local extrema, it can be shown that the

numerical scheme reduces to first-order. �

Remark 3.1. We explicitly point out that, since the time derivatives in (20) are discretized by the forward

Euler scheme, the second-order accuracy of the numerical method must be intended in space, only.

Remark 3.2. It is well known that the numerical solutions computed by the Roe scheme may exhibit

nonphysical expansion shocks, due to the small amount of artificial viscosity introduced near sonic points.

To avoid this problem, we modify the low-order fluxes in (32) using the entropy correction proposed by
Harten [18], that consists of evaluating the matrices K� as

K� ¼ K�Q

2
;

where Q is the diagonal matrix

Qh;h ¼
khj j if khj jP 2q;
k2h
4q

þ q if khj j < 2q

8<
: ð34Þ

q being a given tolerance. In the numerical experiments we take q ¼ 0:05c0, where c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5RT0=3

p
is the

speed of sound at thermodynamic equilibrium.

Remark 3.3. For the numerical approximation of the remaining spatial differential terms, namely, the

divergence of the electric field in (2), the gradient of the electrostatic potential in (3) and the divergence of

the heat flux in the energy equation, the usual centered finite difference approximation is employed.
Moreover, in order to enhance the stability of the numerical scheme, the semi-implicit time discretization of

the relaxation terms

nv
sp

¼: nkþ1vkþ1

skp
;

ne� ne0
sw

¼: nkþ1ekþ1 � nkþ1e0
skw

is performed without any additional computational effort (the relaxation terms having a diagonal form in
the hydrodynamic system (1)).
4. Numerical results

This section is devoted to the discussion of the numerical results obtained in the simulation of a sub-

micron nþ � n� nþ diode in the one-dimensional case. Namely, we study a 0.6 lm silicon diode with 0.1 lm
source, 0.4 lm channel and 0.1 lm drain.

In our experiments, we have used the following quantities (which are similar to those in [16]):

m ¼ 0:26me, me being the free electron mass, � ¼ 11:7�0, �0 being the vacuum dielectric permittivity, and

Nref ¼ 1:44� 1021 m�3, a ¼ 0:659, vs ¼ 1:2� 105 m s�1, Dl ¼ 1:8.
The device doping profile is defined as follows:

NðxÞ ¼ 5� 1023 m�3 if 06 x6 0:1 lm or 0:56 x6 0:6 lm;
1� 1021 m�3 if 0:1 < x < 0:5 lm:

�
ð35Þ
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Appropriate boundary conditions are (see [16]):

• at the source ðx ¼ 0Þ: n ¼ Nð0Þ, T ¼ T0, / ¼ /built�in

• at the drain ðx ¼ LTotÞ: n ¼ NðLTotÞ, T ¼ T0, / ¼ /built�in þ /bias

where /built�in ¼ ðKBT0=qnÞ logðNð0Þ=niÞ is the built-in voltage arising between the semiconductor and the

metal contact and ni is the intrinsic concentration in the semiconductor. As in [16], we have used ni ¼
2:84� 10�14 m�3.

In all the numerical experiments, the lattice temperature is T0 ¼ 77 K and the applied biasing potential is

/bias ¼ 2 V. It is well known that at such a working temperature electron flow is supersonic and shock

waves are experienced by the electron density, velocity and temperature distributions (see [7–9,16]).

At t ¼ 0 we set u ¼ 0 and T ¼ T0. In order to investigate the influence of the smoothness of the initial

electron concentration on the convergence of the numerical scheme, at t ¼ 0 we set

nðxÞ ¼ 5� 1023 m�3 if 06 x6 0:1 lm or 0:56 x6 0:6 lm;
1� 1021 m�3 if 0:1þ d6 x6 0:5� d lm

�
ð36Þ

and we connect the above piecewise constant values by a C1 smooth cosine law. Notice that, according to
(36), the initial electron profile is equal to the doping concentration on all the semiconductor device except

on two intervals of length equal to d, where the jumps at the junctions of the initial electron density are

smeared out. We have performed a parametric study on d in the range [0; 0:15 lm]. As we will see, this

parameter, measuring the regularity of the initial solution, can strongly affect the convergence of the nu-

merical method.

We remark that a similar analysis has been performed on the abruptness of the doping profile, where the

function (35) has been regularized with smooth cosine connection as follows

NðxÞ ¼ 5� 1023 m�3 if 06 x6 0:1 lm or 0:56 x6 0:6 lm;
1� 1021 m�3 if 0:1þ d < x < 0:5� d lm:

�

However, the numerical experiments have revealed that choosing d in the range [0,0.15 lm] does not in-

fluence the properties of the discretization scheme. As a conclusion, the convergence of the numerical

method is affected by the jump of the doping density (which determines the strength of the electric field at
the junctions), but not by the abruptness of such variations.

In order to investigate the influence of the regularity of the solution on the stability of the numerical

scheme proposed in Section 3, different values of the quantities kW�F and d are used in the simulations,

according to the following schedule:

• Test case 1: kW�F ¼ 0, d ¼ 0.

• Test case 2: kW�F ¼ 0, d ¼ 0:1 lm.

• Test case 3: kW�F ¼ 0, d ¼ 0:15 lm.

• Test case 4: kW�F ¼ 0:2, d ¼ 0 lm.
• Test case 5: kW�F ¼ 0:2, d ¼ 0:1 lm.

In the numerical experiments, all of the three slope limiters SL1, SL2 and SL3 introduced in Section 3 are

employed. Computations have also been performed using the Roe first-order approximation, corre-

sponding to taking W ¼ 0. The quantity Nx denotes the number of spatial nodes (Nx ¼ 200 and Nx ¼ 400 in

all of the examples). The experiments show situations in which the steady state is not reached. Concerning

this point, Tables 1–5 illustrate, for each test case, if the numerical method converges or fails to converge

(�conv� and �no conv� indicates convergence and failure to convergence, respectively).

As we can see, the first-order scheme does reach convergence in all of the experiments, while the second-
order scheme, in some situations, does not. We have experienced in all the simulations, in correspondence

of convergence breakdown, the following behaviour of the computed solution: during the transient to

steady state, the solution is non-monotone, and the conservative variables U are affected by spurious



Table 1

Test case 1

WðhÞ ¼ 0 WðhÞ ¼ SL1ðhÞ WðhÞ ¼ SL2ðhÞ WðhÞ ¼ SL3ðhÞ

Nx ¼ 200 Conv No conv No conv No conv

Nx ¼ 400 Conv No conv No conv No conv

Table 2

Test case 2

WðhÞ ¼ 0 WðhÞ ¼ SL1ðhÞ WðhÞ ¼ SL2ðhÞ WðhÞ ¼ SL3ðhÞ

Nx ¼ 200 Conv No conv No conv No conv

Nx ¼ 400 Conv No conv No conv No conv

Table 3

Test case 3

WðhÞ ¼ 0 WðhÞ ¼ SL1ðhÞ WðhÞ ¼ SL2ðhÞ WðhÞ ¼ SL3ðhÞ

Nx ¼ 200 Conv Conv Conv No conv

Nx ¼ 400 Conv Conv Conv No conv

Table 4

Test case 4

WðhÞ ¼ 0 WðhÞ ¼ SL1ðhÞ WðhÞ ¼ SL2ðhÞ WðhÞ ¼ SL3ðhÞ

Nx ¼ 200 Conv Conv Conv No conv

Nx ¼ 400 Conv Conv Conv Conv

Table 5

Test case 5

WðhÞ ¼ 0 WðhÞ ¼ SL1ðhÞ WðhÞ ¼ SL2ðhÞ WðhÞ ¼ SL3ðhÞ

Nx ¼ 200 Conv Conv Conv Conv

Nx ¼ 400 Conv Conv Conv Conv
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oscillations at the drain junction (see Figs. 1 and 2). The oscillations make the electron density (shown in

Fig. 2), become negative, so that also the electron temperature becomes negative, and the numerical sim-

ulation stops.

Some remarks are here in order:

1. Reducing the time integration does not change the behaviour described above. To assess the validity of

this statement, we have used values of Dt up to 1000 times smaller than the time step at which the first-

order approximation works, but the numerical instability has not been removed. On the contrary, once
the space interval DX is fixed, the instability occurs always at the same time, that is not influenced by the

value of Dt.
2. Failure to convergence is influenced by the spatial discretization. To see this point, we have carried out a

numerical simulation of Test case 1 (choosing the slope limiter SL1) on a very refined mesh of 2000 nodes
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Fig. 2. Test case 1, with slope limiter SL1 and Nx ¼ 400: electron density at t ¼ 1:86 ps, zoom at the drain junction.
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Fig. 1. Test case 1, with slope limiter SL1 and Nx ¼ 400: electron current at t ¼ 1:86 ps, zoom at the drain junction.
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(Nx ¼ 2000), and the steady state has been reached. This seems to suggest that failing to converge does

not necessarily indicate the lack of an analytical solution to the hydrodynamic system of equations (we

have performed only one simulation using 2000 spatial nodes, since the computational cost of working
with such a refined mesh is very expensive).

The fact that the computed solution is affected by spurious oscillations reveals that the numerical

method is actually not TVD. Indeed, as already pointed out in Section 3, the scheme can achieve total

variation diminishing only in the case where the characteristic directions (the eigenvectors R) are constant.

Now, at the drain junction of the device, the solution experiences very strong variations, due to the presence
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Fig. 3. Test case 1, 2, 3, with slope limiter SL1 and Nx ¼ 400: electric field at steady state.
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of a high electric field (see Fig. 3), and the characteristic directions are far from being constant. For this

reason, some spurious oscillations occur, and their amplitude, despite being moderate, is large enough to

make the electron concentration, which is small at the end of the channel, become negative, thus yielding

the numerical instability. Comparing Tables 1–3, we notice that the method achieves better stability when

the regularity of the initial solution increases. This can be explained by the fact that, when the solution is

smoother, the characteristic directions tend to become constant on adjacent grid points, leading to �a more

TVD� approximation. The same argument can be applied to explain why the stability of the method can be
improved by increasing the number of nodes of the mesh.

We remark that a �monotonicity improvement� of the steady electron current due to grid refinement has

also been observed in [17].

Numerical stability can also be enhanced by increasing the amount of heat dissipation present in the

physical model (see Tables 4 and 5). This is not surprising since, in such a case, we are adding a diffusive and

regularizing contribution to the whole set of equations.

Concerning the influence of the choice of the flux limiter on the numerical stability, it is worth noticing in

Tables 1–5 that SL1 and SL2 exhibit the same behaviour, while SL3, looking at Test cases 4 and 5, reveals
to be more unstable. This can be explained by the fact that the function SL3 actually coincides with the

boundary of the region where the approximation is TVD, i.e. if WðhÞ > SL3ðhÞ, then the discretization is no

longer total variation diminishing (see [20]). For this reason, the attitude of the numerical method to be-

come non TVD, and to generate oscillations, in the nonlinear regime is greater when SL3 is used rather than

SL1 or SL2.

Let us now investigate the spatial accuracy of the numerical method. First of all, we point out that the

main difference between the second-order scheme and the first-order one concerns the approximation of the

electron current, which is, among the physical quantities, the most sensitive to numerical errors, as already
shown in [3,15]. For instance, as we can see in Fig. 4, the second-order approximation of the steady electron

velocity and the first-order one are almost the same, while the steady electron current profile is very sen-

sitive to the order of approximation used.

In particular, Fig. 5 shows that the steady electron current profile is affected by wide oscillations at the

drain junction of the device when the second-order scheme is used, experiencing also a jump there. Since the
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electron current must be a constant function at steady state, the amplitude of the spurious oscillations and
of the corresponding jump can be assumed as a measure of the numerical error. As already observed in [15],

the deviation of the steady electron current from its mean value is quite relevant, and decreases after mesh

refinement. However, the numerical experiments show that the error is reduced only by a factor of one half

when the number of nodes is multiplied by two (see Fig. 6), which implies that the numerical method is first-

order accurate at the drain junction of the semiconductor device. We remark that the electron current

profile computed at steady state suffers the same loss of accuracy when the slope limiters SL1, SL2 and SL3

are used.
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A closer look at numerical results explains the inaccuracy of the high-order approximation: at the drain

junction the slope limiters, which should counterbalance the large sources of error due to the strong

variations of the solution, actually perform quite poorly. Let us denote by W1, W2, and W3 the slope limiters

acting on the characteristic increments Dv1, Dv2, Dv3, associated with the eigenvalues k1 ¼ u� c, k2 ¼ uþ c
and k3 ¼ u respectively, c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5RT =3

p
being the speed of sound in the device (since the flow at the end of the

channel is subsonic only W�
1 , W

þ
2 , W

þ
3 matter).

Figs. 7–9 show the profiles of the slope limiters at the drain junction, obtained, at steady state, using SL1

(the choice of SL2 or SL3 would give similar results). As we can notice, the functions W1 and W2 are quite

far from 1, and, moreover, they are not 1þ OðDX Þ since at the end of the channel the Riemann invariants
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Fig. 7. Test case 4, 5, with slope limiter SL1: function W1 at steady state, zoom at the drain junction.



Fig. 8. Test case 4, 5, with slope limiter SL1: function W2 at steady state, zoom at the drain junction.
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v1, v2 associated with the hyperbolic part of the hydrodynamic model and computed as the discrete sum-

mation of the characteristic increments Dv1, Dv2 exhibit, at steady state, two local extrema (see Figs. 10 and

11). Near these points, the ratio between two consecutive increments of Dv1 and Dv2 cannot be 1þ OðDX Þ,
and the slope limiters evaluated accordingly are not 1þ OðDX Þ as well.

Fig. 9 shows that, unlike in the case of W1 and W2, the function W3 is indeed 1þ OðDX Þ, due to the fact

that the discrete Riemann invariant v3 (shown in Fig. 12) has no local extrema at the drain junction (ac-

tually v3 exhibits a minimum before the end of the channel, but this is not a relevant source of error since

the solution does not attain significant variations there). We point out that a local extremum (a minimum)



Fig. 10. Test case 4, 5: discrete Riemann invariant v1, steady state.

Fig. 11. Test case 4, 5: discrete Riemann invariant v2, steady state.
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is experienced by function v1 also at the source junction where the electron current profile is affected by
some OðDX Þ oscillations as well.

As for the computation of shock wave in the electron velocity profile, we can notice that the high-order

scheme produces a satisfactory approximation of the shock that is generated at steady-state at

x ¼ 2:25 lm, both in terms of resolution of the discontinuity (see Fig. 4) and of electron current con-

servation (see Fig. 5).

Finally, we do mention that, in all the experiments, the numerical solution is affected very weakly

by the entropy correction (34). Indeed such an enforcement is effective only at sonic points, so it does not

remove the numerical instabilities, and does not produce any relevant changes on the computed solution.



Fig. 12. Test case 4, 5: discrete Riemann invariant v3, steady state.
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5. Conclusions

In this paper, the hydrodynamic model for semiconductors is solved by a TVD second-order upwinded
finite difference scheme. In particular, the high-order fluxes are evaluated by a fully upwinded extrapolation

on adjacent cells of the first-order fluxes of Roe, allowing the semi-implicit discretization of the relaxation

terms. Suitable TVD properties are then achieved by limiting the slopes of the discrete solution along the

directions associated with the characteristics of the hyperbolic system.

The numerical simulation is carried out on the one-dimensional nþ � n� nþ diode benchmark problem,

and several slope limiters are employed and compared, namely, the minmod function (SL1), the slope limiter

of Van Albada (SL2) and the superbee limiter (SL3), together with the Roe first-order approximation

scheme, corresponding to taking W ¼ 0.
Several test cases are numerically solved in order to investigate the convergence of the numerical method

as a function of the smoothness of the solution of the hydrodynamical problem. In particular, it is shown

that the scheme, being TVD only when applied to hyperbolic systems with constant characteristic direc-

tions, does not completely preserve the monotonicity of the discrete solutions. On the contrary, some

spurious oscillations arise, which, despite being of moderate amplitude, can lead to convergence breakdown

by making the electron density become negative.

The numerical instabilities are experienced in correspondence of strong variations of the computed

solutions, and do not occur if the initial electron concentration is a smooth enough function. This gives a
strong indication on a proper choice of the initial solution when the hydrodynamic model is applied to the

simulation of more complex and multidimensional devices.

The experiments reveal that the spurious oscillations can also be controlled by suitably reducing the size of

the computational grid, a phenomenon that we heuristically explain by the following argument: on a very

refined grid, the characteristic directions of the hyperbolic system can be considered to be constant on ad-

jacent mesh points, leading to a �more TVD behaviour� of the numerical approximation (see Proposition 1).

A further control on the numerical instabilities can also be achieved by increasing the amount of heat

conductivity present in the physical model, a fact that does not surprise, as we are adding a regularizing
contribution to the whole set of the equations.
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Concerning the influence of the choice of the slope limiter on the convergence of the method, it is in-

teresting to notice that SL3 is more unstable than SL1 and SL2, since the superbee limiter coincides with the

boundary of the TVD region of the numerical scheme, hence it is more sensitive to escaping from it in the
strongly non-linear regime.

Finally, we remark that the first-order scheme reveals to be capable of reaching convergence to steady

state in all of the numerical experiments.

As for the accuracy of the numerical method, the simulation results highlight that the electron current

profile is non-monotone both at the source and the drain junction of the device. In particular, the spurious

oscillations become very large at the drain end of the channel, where the computed electron current profile

is not flat at steady state, but exhibits significant variations from the mean value, thus suffering a con-

siderable loss of accuracy. The simulations reveal that such a numerical error can be reduced by mesh
refinement, but it is OðDX Þ only. This phenomenon is due to the poor behaviour of the flux limiters, that are

quite significantly far from 1 at the drain junction, thus spoiling the performance of the high-order scheme

in a spatial region where the solution experiences steep gradients and therefore the discretization error is

relevant.

The experiments show also that the poor convergence of the flux limiters is related to the shape of the

Riemann invariants of the hyperbolic part of the hydrodynamic set of equations, whose slopes are used to

limit the anti-diffusive high-order fluxes. In particular, the Riemann invariants associated with the eigen-

values u� c and uþ c have two points of local extremum at the end of the channel, causing the corre-
sponding slope limiters be not 1þ OðDX Þ there.

Concerning this latter point, we notice that the same argument could be used to explain the considerable

loss of accuracy on the steady electron current at the drain junction that is experienced by Anile and co-

workers [3–5], where an extended hydrodynamic model taking into account the first five moments of the

Boltzmann equations is solved by the Nessyahu–Tadmor scheme: in this case the slope limiters act directly

on the primitive variables U, and, looking at the results presented in the above works, at least two functions

in the set U, the electron energy and the heat flux, exhibit points of local extrema at the end of the channel

at steady state.
Finally, we have investigated the properties of the numerical scheme depending on the regularity of the

doping concentration: this analysis has shown that the convergence of the numerical scheme is not affected

by the abruptness of the doping concentration, at least when the jumps of the doping profile are smeared

within a physically reasonable length.

We also mention that the numerical method has been also validated on the solution of the shock-tube

problem dealing with the Euler equations of gas dynamics, which, from the mathematical standpoint,

corresponds to taking only the hyperbolic part of the hydrodynamic system (1). In this case (results not

reported here), the resolution of the discontinuities by the second-order scheme is excellent. Both this fact
and the accurate computation of semiconductor shocks produced by the second-order scheme reveal that

the discontinuity present at the drain junction of the nþ � n� nþ diode, due to the strong electric field, is

something more challenging to approximate than a shock wave.

Finally, since the experiments show that the amplitude of the spurious oscillations can be reduced by grid

refinement, in such a way that a stable and sufficiently accurate solution can be obtained, it seems con-

venient, also in view of possible 2-D extensions, to combine high resolution schemes with a mesh adaption

technique, based on the variation of the electron current profile. This will be the object of a future work.
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